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Considerable attention has focused on regulation of central tryptophan hydroxylase (TPH)
activity and protein expression. At the time of these earlier studies, it was thought that there
was a single central TPH isoform. However, with the recent identification of TPH2, it becomes
important to distinguish between regulatory effects on the protein expression and activity of
the two isoforms. We have generated a TPH2-specific polyclonal antiserum (TPH2-6361) to
study regulation of TPH2 at the protein level and to examine the distribution of TPH2
expression in rodent and human brain. TPH2 immunoreactivity (IR) was detected throughout
the raphe nuclei, in lateral hypothalamic nuclei and in the pineal body of rodent and human
brain. In addition, a prominent TPH2-IR fiber network was found in the human median
eminence. We recently reported that glucocorticoid treatment of C57/Bl6 mice for 4 days
markedly decreased TPH2 messenger RNA levels in the raphe nuclei, whereas TPH1 mRNA
was unaffected. The glucocorticoid-elicited inhibition of TPH2 gene expression was blocked
by co-administration of the glucocorticoid receptor antagonist mifepristone (RU-486). Using
TPH2-6361, we have extended these findings to show a dose-dependent decrease in raphe
TPH2 protein levels in response to 4 days of treatment with dexamethasone; this effect was
blocked by co-administration of mifepristone. Moreover, the glucocorticoid-elicited inhibition
of TPH2 was functionally significant: serotonin synthesis was significantly reduced in the
frontal cortex of glucocorticoid-treated mice, an effect that was blocked by mifepristone co-
administration. This study provides further evidence for the glucocorticoid regulation of
serotonin biosynthesis via inhibition of TPH2 expression, and suggest that elevated
glucocorticoid levels may be relevant to the etiology of psychiatric diseases, such as
depression, where hypothalamic-pituitary-adrenal axis dysregulation has been documented.
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Introduction

Tryptophan hydroxylase (TPH) catalyzes the first step
in the biosynthesis of serotonin and melatonin and is
the rate-limiting enzyme in the serotonin biosynthetic
pathway.1–3 A second TPH isoform identified by
Walther et al.,4 in 2003, is termed TPH2, while the
original TPH isoform is now termed TPH1. TPH2 is
the predominant central nervous system (CNS) iso-

form in all species examined thus far, with TPH2
messenger RNA expressed throughout the raphe
nuclei.5,6 TPH1 mRNA is expressed in the CNS at
extremely low levels,7 although TPH1 mRNA is
robustly expressed in the pineal gland, where TPH
mediates melatonin biosynthesis.5,8 Recent data have
suggested a possible association between TPH2
polymorphisms and a variety of psychiatric disorders
including major depression,9–14 suicide,13,14 attention-
deficit/hyperactivity disorder,15–17 autism,18 bipolar
disorder,19 and obsessive compulsive disorder.16 In
addition, it has recently been shown that polymorph-
isms in the 30-UTR of rhesus monkey TPH2 modulate
hypothalamic-pituitary-adrenal (HPA) axis function
presumably through changes in TPH2 expression.20

These data suggest that changes in the expression
and/or function of TPH2 may be associated with
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psychiatric disease and emphasize the need to under-
stand what makes TPH isoforms distinct with regard
to function and regulation.

TPH mRNA, protein, and enzyme activity in the
dorsal raphe nucleus (DRN) have all been shown to be
regulated by ovarian and stress hormones.7,21–30 While
these studies demonstrated hormonal regulation of
serotonin synthesis, the existence of TPH isoforms
was not yet appreciated and therefore not studied.
With the identification of TPH2,4 it has become
important to understand the effects of hormones on
the individual isoforms. Because currently available
TPH antibodies do not distinguish between the
two isoforms,4 it has been impossible to study the
distribution and regulation of the specific TPH
protein isoforms in the CNS.

We recently showed that glucocorticoids signifi-
cantly modulate TPH2, but not TPH1 mRNA expres-
sion in the murine DRN, while estradiol had no effect
on TPH2 mRNA expression.31 We now describe the
identification and characterization of TPH2-specific
antiserum (TPH2-6361), which we have used to study
TPH2 protein distribution in rodent and human brain.
In addition, we used TPH2-6361 to show that
glucocorticoid modulation of TPH2 mRNA is fol-
lowed by changes in TPH2 protein expression in the
murine raphe. Finally, we determined if glucocorti-
coid effects on expression of TPH2 message and
protein result in changes in the in vivo synthesis of
serotonin in the frontal cortex. Our data suggest that
glucocorticoids regulate the serotonergic system at the
level of serotonin biosynthesis by modulation of the
TPH2 isoform.

Materials and methods

Animal treatment procedure
Adult ovariectomized (ovx) female C57/BL6 mice
(13–16 weeks; Charles River, Wilmington, MA, USA)
and adult intact female Sprague–Dawley rats (23
weeks; Taconic, Carlsbad, CA, USA) were housed in
an AAALAC approved facility at Merck & Co.,
Rahway, New Jersey, with free access to soy-free
rodent chow and water. Tissue from ovx mice and
intact female rats were used for the immunocyto-
chemical (ICC) and western blot analyses to char-
acterize the TPH2 antisera. For ICC studies, rats
or mice were anesthetized with ketamine/xylazine
(100–200/5–10 mg/kg, i.p.), transcardially perfused
with 4% paraformaldehyde and the brains were
removed for sectioning.

Glucocorticoid treatment of ovx mice consisted of
once daily subcutaneous (s.c.) dosing for 4 days with
propylene glycol/DMA (vehicle) or glucocorticoids
(5–7 per group; see individual experiments for doses
used). Approximately 6 h following the final dose,
mice were anesthetized with ketamine/xylazine,
decapitated, brains removed and slices of the pons
containing the raphe nuclei were dissected, frozen on
dry ice and stored at �801C for western blot analyses.
For neurochemical studies, mice were dosed with the

3,4-dihydroxyphenylalanine (DOPA) decarboxylase
inhibitor 3-hydroxybenzylhydrazine dihydrochloride
(NSD 1015).32 (100 mg/kg i.p.) to inhibit 5-HT syn-
thesis, 30 min before sacrifice. Mice were anesthetized
with ketamine/xylazine, decapitated, brains removed,
and samples of frontal cortex were dissected, frozen on
dry ice and stored at �801C for high-performance
liquid chromatography (HPLC) analyses.

Human tissue
Punches and blocks from discrete regions of human
brains were collected at autopsy by Miklos Palkovits
in the Laboratory of Neuromorphology, Semmelweis
University (Budapest, Hungary). The protocol of
tissue sampling and retrospective assessments was
approved by the Institutional Review Board of the
Semmelweis University, Budapest. Microdissected
regions from patients (ages 24–66) were taken 1–6 h
postmortem. The tissue was immediately frozen on
dry ice and stored at �801C. Human postmortem
tissue blocks were used from the same source to cut
frozen sections for ICC staining.

TPH2 antibody generation
Two N-terminal peptides corresponding to TPH2
10–24: SKYWARRGLSLDSAV and TPH2 26–39:
EDHQLLGSLTQNKA were synthesized (Biosource
International Custom Antibody Production Services,
Hopkinton, MA, USA) and used as immunogens to
produce antibodies in rabbits. Two rabbits were
immunized per peptide. Crude sera were harvested
and analyzed by enzyme-linked immunosorbant
assay to the original peptide and by western Blot
techniques. Two polyclonal sera that recognize TPH2
were identified and affinity purified: TPH2-6361,
which was generated against TPH2 10–24, and
TPH2-6362, which was generated against TPH2
26–39. Based on the results of immunoblot and
immunohistochemical studies, data presented herein
were obtained using TPH2-6361.

Western blot analyses
Frozen tissue was homogenized on ice in homo-
genization buffer (50 mM Tris-HCl, 150 mM NaCl, 1%
Triton X-100, 2 mM ethylenediaminetetraacetic acid
(EDTA), 0.05% sodium dodecylsulfate (SDS), 10 mg/
ml Pepstatin, and � 2 concentration of complete
protease inhibitor cocktail (Roche Applied Science,
Indianapolis, IN, USA), using a FastPrep 120 (Q
Biogene, Irvine, CA, USA), and clarified by centrifu-
gation. COS cells transfected with the expression
plasmid pcDNA 3.1 (Invitrogen, Carlsbad, CA, USA)
containing the TPH1 or TPH2 coding region were
lysed in homogenization buffer and prepared as
described previously. Total protein was determined
using a modified Lowry method (BioRad DC Protein
Assay, BioRad, Hercules, CA, USA). Total protein for
tissue and cell homogenates (see individual experi-
ments for amounts loaded), in Laemmli reducing
sample buffer was loaded in a 12.5% Tris-HCl SDS-
polyacrylamide gel (SDS-PAGE Criterion System,
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BioRad) and fractionated by electrophoresis. Samples
were transferred to 0.2mm nitrocellulose membranes
by electroelution. Membranes were blocked with
TBSþ 1% Caseinþ 0.05% Tween 20 (Pierce, Rock-
land, IL, USA). Blocked membranes were incubated
overnight at 41C with a 1/10 000 dilution of affinity-
purified rabbit anti-TPH-2 antibody 6361 in TBS
þ0.05% Caseinþ 0.05% Tween 20. After washing
(six changes over 40 min) in TBSþ 0.1% Tween 20
(Sigma, St Louis, MO, USA), membranes were
incubated in TBSþ 0.05% Caseinþ0.05% Tween
20 containing 1/75 000 dilution of horseradish
peroxidase-conjugated Goat anti-rabbit IgG (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) for
4 h at room temperature. Membranes were washed
(six changes over 40 min) in TBSþ 0.1% Tween
20 and then incubated in SuperSignal West
Dura Extended (Pierce) duration enhanced chemi-
luminescent substrate for 5 min. Antigens were
visualized by exposing the blot to Kodak Bio-
max MR X-Ray film (Kodak, Rochester, NY, USA)
for 6 s.

To determine differences in TPH2 protein between
vehicle and steroid-treated tissue samples, homo-
genates were prepared, fractionated by SDS-PAGE
and blotted to nitrocellulose membranes as de-
scribed above (see individual experiments in Results
and Figure Legends for treatment paradigms). Mem-
branes were incubated with TPH2-6361, developed
with SuperSignal West Dura Extended and apposed
to films. Films were scanned using BioRad GS 800
Calibrated Densitometer. Images were analyzed
using AlphaEaseFC Imaging Software (Alpha Inno-
tech, San Leandro, CA, USA). Using the spot density
tools, an integrated density value (IDV) was deter-
mined for each sample. The values represent
mean7s.e.m. for five individual animals and are
presented as fold change as compared to vehicle
control. Raw IDV values for each experiment were
analyzed using a one-way analysis of variance before
conversion of data to fold changes.

Immunocytochemistry

Staining with polyclonal antiserum TPH2-6361 was
performed on perfused mouse and rat brains and
fresh frozen human brain sections (12 mm). Rodents
were perfusion fixed with 4% buffered paraformal-
dehyde. The brains were dissected, cryoprotected in
an increasing concentration of sucrose, frozen and
sectioned in a cryostat. All sections were blocked in
Power Block (BioGenex, San Ramon, CA, USA) for
10 min at room temperature before immunostaining.
The slides containing the rodent sections were
incubated in TPH2-6361 (1:10 000) at 41C overnight,
and visualized with anti-rabbit Alexa-594 (1:1000;
Molecular Probes, Carlsbad, CA, USA) for 1 h at
room temperature. Human fresh frozen brain sec-
tions were fixed with 8% formaldehyde in PBS for
10 min at room temperature and then incubated in
TPH2 antibody (1:30 000) at 41C overnight. Anti-

rabbit Alexa-594 (1:1000) was used for 1 h at room
temperature to visualize the immunostaining. For
human pineal body, anti-rabbit SuperPicTure
(Zymed, Invitrogen, Carlsbad, CA, USA) was used,
followed by Alexa-594-conjugated tyramide to enhance
sensitivity. In all sections, nuclei were stained
with 4’,6-Diamidino-2-phenylindole and in the
human brain tissue, Sudan black was used to
block lipofucsin-induced autofluorescence. TPH2-
6361 was preabsorbed by incubating 1 mg of peptide
antigen with 0.5 mg of affinity-purified antibody
overnight at 41C. The solution was briefly centri-
fuged and used to stain tissue sections as described
above. No immunoreactivity (IR) was observed
when tissue was incubated without TPH2-6361,
without secondary antibody or with preabsorbed
antibody.

Determination of cortical 5-HT synthesis

Cortical 5-HT synthesis was determined by measur-
ing the rate of accumulation of 5-HTP 30 min after
inhibition of 5-HT synthesis by the DOPA decarboxy-
lase inhibitor NSD 101532 (100 mg/kg i.p.). Cortical
tissue (n = 6 for each treatment group) was removed
from �801C storage, weighed and homogenized in 10
volumes of homogenization buffer (0.4 M perchloric
acid, 0.02% L-cysteine, 0.02% ascorbic acid,
0.0035% sodium EDTA). Homogenates were centri-
fuged at 10 000 g and supernatants frozen and stored
at �801C until analysis. Samples were analyzed by
HPLC with electrochemical detection essentially as
described by Barton and Hutson.32
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Figure 1 Immunoblotting with TPH2-specific antiserum.
Rodent brain tissue samples (40 mg), P815 whole-cell
homogenate (30 mg) and COS whole-cell homogenates
(1 mg) were run on sodium dodecylsulfate-polyacrylamide
gel electrophoresis and transferred to nitrocellulose for
immunoblotting. The TPH2-specific antiserum TPH2-6361
detected a dominant B55 kDa and a minor B47.5 kDa band
in whole-cell homogenates from COS cells overexpressing
TPH2 (TPH2-COS). The antiserum detected an B51 kDa
band in total protein from a murine midbrain slice contain-
ing raphe nuclei (R) and murine forebrain (Fb). The
antiserum did not detect bands in whole-cell homogenates
from pcDNA 3.1-transfected COS cells (Vector), COS cells
overexpressing TPH1 (TPH1-COS) or in P815 cells, a murine
mastocytoma cell line that expresses TPH1 exclusively.
TPH, tryptophan hydroxylase.
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Results

Western blot validation studies with TPH2 polyclonal
antiserum
TPH2-6361 detected a band of approximately
50 kDa in murine raphe and forebrain homogenates
(Figure 1). In COS cells overexpressing TPH2, the
antiserum detected a dominant band of approxi-
mately 55 kDa and a minor band of approximately
47 kDa (Figure 1). The antiserum did not detect
bands in vector-transfected COS cells, COS cells
overexpressing TPH1 or in P815 cells, a murine
mastocytoma cell line that expresses TPH1 exclu-
sively (Figure 1).

TPH2-6361 immunoreactivity in rodent and human
brain
TPH2-IR was detected in raphe nuclei from mouse, rat
and human. In rodent brain, TPH2-6361 IR was found
across the full extent of the raphe nuclei from the
midbrain throughout the brainstem. TPH2-6361-IR
was seen in the dorsal raphe (Figures 2a, 3a, 4a and b),
raphe magnus (Figures 2b and 4e) and in the rat
caudal linear midbrain raphe (Figure 3b). Large
arteries in human (Figure 4d) brain showed pro-
nounced TPH2-6361-IR. Rodent and human pineal
body exhibited TPH2-6361-IR in cell bodies and in
beaded fibers (Figures 2c, 3c and 4c). Neuronal cell
bodies in human lateral hypothalamus (Figure 4i) and
cells in the anterior pituitary (Figure 4f) exhibited
TPH2-6361-IR.

Western blot analyses of microdissected human
brain tissue samples revealed TPH2-6361 reactive
bands in pituitary, dorsal raphe, supraoptic and
pineal samples (Figure 5). A band of approximately
55 kDa was detected in COS cells expressing the
TPH2 coding region; however, the prominent band in
the human tissue samples was approximately 47 kDa
in size and was found in the pituitary, dorsal raphe,
supraoptic nucleus and pineal body. A second band

of approximately 50 kDa was detected in both the
human dorsal raphe and pineal body samples.

Glucocorticoid modulation of TPH2 protein in murine
raphe nuclei and in vivo 5-HT synthesis in frontal
cortex

Daily s.c. administration of dexamethasone at doses
from 0.3 to 3 mg/kg for 4 days in mice decreased TPH2
protein levels in the raphe by 23–30% (0.3 mg/kg,
P < 0.01 and 3 mg/kg, Pp0.001, respectively; Figure 6a).
In a separate experiment, administration of 1.0 mg/kg
dexamethasone once daily for 4 days resulted
in a 27% reduction in TPH2 protein levels (Pp0.001)
in the raphe (Figure 6b) and co-administration of
dexamethasone (1 mg/kg) and mifepristone (30 mg/kg)
reversed the glucocorticoid effect (Figure 6b).
Co-administration of dexamethasone and mifepris-
tone reduced TPH2 protein levels by 8%; this change
was statistically different from the dexamethasone
effect (P < 0.005), but not from the vehicle control
value (Figure 6b). Treatment with mifepristone alone

Figure 2 Immunocytochemical staining of murine central nervous system tissue with TPH2-6361. TPH2-6361 IR was found
in neuronal cell bodies in murine dorsal raphe nucleus (a), raphe magnus (b) and pineal gland (c). Arrows point to TPH2
immunoreactivity in the basal artery at the pontine level (b) and in beaded fibers in the pineal body (c) AQ, aqueduct;
Bar = 100mm (a) and 25 mm (b and c). IR, immunoreactivity; TPH, tryptophan hydroxylase.

Figure 3 Immunocytochemical staining of rat central
nervous system tissue with TPH2-6361. TPH2-6361 immuno-
reactivity was found along the raphe nuclei in the midbrain
and brainstem. Neuronal cell bodies in rat dorsal raphe
nucleus (a), linear raphe (b) and pineal body (c) are shown.
Bar = 50mm. TPH, tryptophan hydroxylase.
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caused a small, but statistically significant increase
in TPH2 protein levels (P < 0.005; Figure 6b).

Concentrations of 5-HTP in frontal cortex were
reduced by 54% (P < 0.01) in response to once daily
dosing with 1.0 mg/kg dexamethasone (Figure 7).

Co-administration of mifepristone (30 mg/kg) comple-
tely blocked the effect of dexamethasone (1 mg/kg) on
cortical 5-HTP levels. Administration of mifepristone
alone had no significant effect on 5-HTP concentra-
tions.

Figure 4 Immunocytochemical staining of human central nervous system tissue with TPH2-6361. TPH2-6361 IR in human
dorsal raphe neurons at low (a) and high (b) magnification. Panels show TPH2-6361 IR in fibers and cells in the pineal body
(c), and pituitary gland (f), blood vessels (d), neurons in the pontine raphe (e) and lateral hypothalamus (i), as well as a fiber
network in the median eminence (g) and periventricular zone (h). The fluorochrome used was AlexaFluor-594 (a–f) or
AlexaFluor-488 (g–i) Aq, aqueduct. Bar = 25 mm (b), 50mm (a, e, i) and 100mm (c, d, f–h). IR, immunoreactivity; TPH,
tryptophan hydroxylase.
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Discussion

A TPH2-specific antiserum TPH2-6361 was devel-
oped to a peptide antigen in the N terminus of the
protein, a location with no homology to TPH1. TPH2-
6361 is specific for the TPH2 isoform; it reacted with
protein extracts from TPH2-expressing COS cells, but
not from TPH1-expressing COS cells or P815 masto-
cytoma cells, which express only TPH1. TPH2-6361
retained its reactivity and specificity in immunoblot-
ting and ICC applications, demonstrating its useful-
ness in examining the distribution of TPH2 protein
in the CNS and suggesting its potential usefulness
in detecting modulatory changes in TPH2 protein
expression. TPH2-6361 showed reactivity against the
respective antigen in both rodent and human tissues
and has been used to examine the distribution of
TPH2 protein in CNS tissue. TPH2 protein was found
in both pineal gland and raphe nuclei of rodent and
human brain. To date, study of TPH2 mRNA distri-
bution has focused on the pineal gland and raphe
nuclei. These studies have shown low, but detectable
levels of TPH2 message in the pineal gland, which do
not vary with time of day, in contrast to the circadian
expression of TPH1 mRNA in this tissue.5,8 TPH2
mRNA is robustly expressed in median and dorsal
raphe nuclei and its expression has been shown to
exhibit a circadian rhythmicity in these brain
regions.33 These data suggest that serotonin rhythmi-
city in the circadian system eminates from transcrip-
tional regulation of TPH2 in the raphe nuclei.

Immunoblot analyses of human dorsal raphe and
pineal tissues with TPH2-6361 revealed a doublet of
47 and 50 kDa, while a dense band of 55 kDa and a
minor band of 47 kDa were detected in protein
extracts from COS cells expressing murine TPH2. It
is possible that the difference in the size of the human
and murine TPH2 proteins is due to differences in

post-translational modifications made in different cell
types or tissues from different species. With regard to
the doublet detected in some human CNS samples,
Sakowski et al.34 have generated a TPH2-specific
antiserum to an overlapping region of the TPH2
sequence and have reported the detection of a similar
doublet, when immunoblotting protein extracts from
certain rodent CNS tissues. Further study is required
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Figure 5 Immunoblotting of tryptophan hydroxylase
(TPH)2 in microdissected human brain regions. Total
protein from human brain microdissected regions (100 mg)
and COS whole-cell homogenate (0.5 mg) were run on
sodium dodecylsulfate-polyacrylamide gel electrophoresis
and transferred to nitrocellulose for immunoblotting. TPH2-
6361 detected a single band of 55 kDa in whole-cell
homogenate from COS cells overexpressing TPH2. A
predominant band of 47 kDa and a weaker band of 51 kDa
was found in total protein from pituitary, supraoptic
nucleus, pineal body and dorsal raphe. DR, dorsal raphe;
Pin, pineal body; Pit, pituitary; SON supraoptic nucleus;
TPH2, COS cell lysate overexpressing TPH2.
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Figure 6 Regulation of TPH2 protein by dexamethasone in
murine pontine raphe as measured by western blot
analyses. Administration (s.c.) of dexamethasone (Dex) at
doses from 0.1 to 3.0 mg/kg once daily for 4 days resulted in
a reduction in TPH2 protein levels from 23% at 0.3 mg/kg to
30% at 3 mg/kg in the murine raphe slice preparation (a).
Administration of 1 mg/kg dexamethasone once daily for 4
days resulted in a 27% decrease in TPH2 protein in the
murine raphe slice (b). Co-administration of 1 mg/kg
dexamethasone and 30 mg/kg mifepristone (Mif) resulted
in protein levels that were not statistically different from
vehicle control levels, but were statistically different from
the effect of 1 mg/kg dexamethasone alone (b). A 30 mg/kg
portion of mifepristone caused a small, but statistically
significant increase in TPH2 protein levels (b). *P < 0.01,
**P < 0.005, and ***Pp0.001 with respect to vehicle
control; #P < 0.005 with respect to 1 mg/kg dexamethasone,
one-way analysis of variance. TPH, tryptophan hydroxylase.
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to understand the size differences detected in certain
tissue and cell types and the significance of the doublet.

Sakowski et al.34 have recently reported the use of
their TPH isoform-specific antiserum in immunoblot
analyses to study the tissue distribution of TPH1
and TPH2. The TPH2-specific antiserum (aTPH2)
detected proteins of approximately 55 kDa in murine
mesencephalic tegmental, striatal and hippocampal
samples.34 No TPH2 protein was detected in the
pineal gland with aTPH2 by immunoblot. These
findings stand in contrast to our data, which show
fiber and cell body staining with TPH2-6361 in rodent
and human pineal gland. It is unlikely that the
discrepancy in our findings is due to the different
antiserum, because the antigens used to generate
these antisera are overlapping peptides in the N-
terminal sequence of TPH2. It is possible that the
immunoblot with mouse aTPH2 lacked the sensitivity
necessary to detect the TPH2 band in pineal gland. It
will be of interest to perform ICC studies with aTPH2
to determine whether the presence of immunoreactive
fibers or cell bodies in the pineal gland can be
demonstrated with the aTPH2 antisera and a tech-
nique of greater sensitivity.

TPH2-6361 IR in human raphe nuclei, pineal gland,
pituitary, hypothalamus and CNS vasculature was
robust using immuncytochemical staining and the
presence of TPH2 IR was confirmed in pituitary,
pineal gland and dorsal raphe by immunoblot
analyses. Although the vast majority of CNS serotonin

is known to originate from the brainstem raphe
nuclei, several groups reported data suggesting the
presence of serotonin-producing cells outside the
raphe nuclei. Over two decades ago Friedman and co-
workers used biochemical measurements in com-
bination with surgeries to demonstrate that the
intermediate lobe of the pituitary gland is innervated
by serotonin fibers that originate within the hypo-
thalamus.35–37 Hypothalamic serotonin-producing neu-
rons have also been reported by other groups,
following pharmacological manipulations.38,39 While
no TPH1 was previously described in the hypothala-
mus, we now report the presence of TPH2 in
hypothalamic areas in both rodent and humans.

TPH2 expression in human CNS has been studied
in postmortem tissue from normal controls and
individuals with psychiatric disease.9,40,41 Quantita-
tive real-time reverse-transcription-polymerase chain
reaction with TPH2-specific primers and probe
detected TPH2 mRNA in human cortex, hypothala-
mus, thalamus, hippocampus, amygdala, cerebellum
and raphe nuclei.41 Studies of postmortem raphe and
cortex show that TPH2 message is increased in
suicide and major depression subjects.9,40 In the
CNS, migraine headaches have long been associated
with serotonin-induced vasodilation.42 The presence
of TPH2 IR in large CNS vasculature in the human
brain may underlie serotonin regulation of cerebral
vasculature and possibly contribute to migraine
pathology. With the availability of TPH2-specific
antiserum (TPH2-6361; aTPH234; TPH2 antibody43),
it is now possible to determine the protein status of
TPH2 in these and other disease states.

Data presented in this study extend previous work
by our group, showing that glucocorticoids regulate
TPH2 mRNA expression in murine raphe nuclei
and that this regulation is glucocorticoid receptor
specific.31 We have now used TPH2-6361 to show
glucocorticoid-specific regulation of TPH2 protein in
murine raphe nuclei. These data represent the first to
show isoform-specific glucocorticoid modulation of
TPH protein in any species. Earlier work by several
groups has shown that TPH mRNA, protein and
activity can be modulated by hormones in raphe
nuclei of various species21–25,27–30,32 and thus may
affect serotonin biosynthesis. It will be important to
revisit these studies using isoform-specific antibodies
such as TPH2-6361 to determine the specific role of
each isoform in each species.

The data presented herein have extended our
findings on glucocorticoid modulation of TPH2
protein to show that glucocorticoids modulate sero-
tonin biosynthesis in vivo, most probably, through
regulation of the expression of TPH2 protein in raphe
nuclei. It has been previously shown that glucocorti-
coids do not effect TPH1 mRNA expression in murine
raphe nuclei31 and so the glucocorticoid-mediated
changes in serotonin biosynthesis observed here are
most likely due to changes in expression levels of
TPH2 protein, although a glucocorticoid effect on
TPH1 protein turnover cannot be entirely ruled out.
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Figure 7 In vivo 5-HT synthesis is modulated by dexa-
methasone in murine frontal cortex. Accumulation of 5-HTP
in vivo in murine frontal cortex was reduced by 54% in
response to once daily dosing with 1.0 mg/kg dexametha-
sone for 4 days. Co-administration of mifepristone (30 mg/
kg) blocked the effect of dexamethasone (1 mg/kg) on
cortical 5-HTP levels and administration of mifepristone
alone had no significant effect. *P < 0.01 in comparison to
vehicle, one-way analysis of varianceþDunnett’s.
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Steroid modulation of TPH2 protein is specific to
the glucocorticoid receptor as co-administration of
the glucocorticoid antagonist mifepristone blocked
the effects of dexamethasone. A small but statistically
significant increase in TPH2 protein was observed
with administration of mifepristone alone; this may
be due to the fact that mifepristone is both a
glucocorticoid and progesterone receptor antagonist.
Ovx mice have low levels of progesterone therefore
the effects of mifepristone on TPH2 are not likely to
be due to engagement of this receptor. Instead, it is
more likely that the effect of mifepristone on TPH2
protein expression is due to antagonism of endogen-
ous glucocorticoids. It is more likely that the effect of
mifepristone on TPH2 protein expression is due to
antagonism of endogenous glucocorticoids as ovx
mice should have low levels of progesterone. This
report is the first to show that modulation of serotonin
biosynthesis through changes in TPH2 expression
may contribute to glucocorticoid modulation of
central serotonergic neurotransmission in the mouse.
The potential relevance of the connection between
glucocorticoids and modulatory changes in the
serotonergic system were recently illustrated by Chen
et al.,20 who identified several polymorphisms in the
30-UTR of rhesus monkey TPH2 that modulate HPA
axis function, most likely by modulating serotonin
biosynthesis. It will be of interest to determine the
reactivity of TPH2-6361 in monkey tissue, as it would
be a useful tool in understanding the interplay between
HPA axis function and serotonin biosynthesis.

In summary, we have generated a TPH2-specific
antiserum with broad reactivity in several species that
is useful for both immunoblotting and ICC studies.
We have detected TPH2-6361 IR in human and rodent
raphe and pineal tissues and in human pituitary,
hypothalamus and CNS vasculature. TPH2-6361 was
used to show glucocorticoid modulation of TPH2
protein expression in murine raphe nuclei that was
blocked by co-administration of the glucocorticoid
antagonist mifepristone. Modulation of TPH2 protein
in raphe nuclei is accompanied by a reduction in
serotonin biosynthesis in the frontal cortex and this
change in synthesis is also blocked by co-administra-
tion of the glucocorticoid antagonist mifepristone.
There is considerable interplay between the seroto-
nergic and HPA systems and evidence suggests that
dysfunction in one of these systems could lead to
impairment in the other.44,45 Glucocorticoid regula-
tion of TPH2 expression and the resulting changes in
serotonin biosynthesis may contribute to the seroto-
nergic response to stressful stimuli and may have
relevance to the etiology of psychiatric disease
accompanied by HPA axis dysregulation,46,47 as well
as psychiatric illness that can be triggered by
glucocorticoid therapy.
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